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Quantum Dynamical Model of Laser-StimulatedIsotope Separation of Adsorbed Species:

Role of Anharmonicity Coupling Strength and
Energy Feedback from the Heated Substrate

Jui-teng Linand Thomas F. George
Department of Chemistry, University of Rochester

Rochester, New York 14627 U.S.A.

A quantum model of a heterogeneous system consisting of a

mixture of isotopes adsorbed on a solid surface and subjected

to laser radiation is presented. The model system is described

by a total Hamiltonian including direct and indirect (surface-

phonon-mediated) couplings. The equations of motion are derived

in the Heisenberg-Markoffian picture in which the many-body

effects of the surface phonon modes and the adspecies are

reduced to an overall broadening (damping factor) given by the

sum of the energy (TI) and phase (T2) relaxations. The effects

of the dephasing and anharmonicity on the average excitation

are investigated. The "bistability" feature with a red-shifted

optimal detuning is discussed in terms of the solution of a

cubic equation. A diagonalization procedure is presented in a

new basis which reveals the effects of the coupling-strength,

the frequency difference and the level width of the isotopes on

the total steady-state excitation, which in turn reflects the

surface spectrum of the model system. Finally, the isotope

selectivity given by the numerical results of the time-integrated

excitations is discussed. It is shown that the optimal detuning

for a weak coupling strength is further red-shifted for a strong

isotopic coupling strength. Finally, energy feedback effects of
the bath modes on the excitations of the active modes are investi-
gated by combining a quantum excitation equation and a classical

. heat diffusion equation.
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* I. Introduction

Infrared multiphoton processes for the separation of isotopes

in the gas phase have been widely studied both experimentally and

theoretically in the past several years. 1For a homogeneous gas-

* phase system, the selective separation of the isotopes is mainly

* characterized by the frequency difference of the isotopes resulting

in different cross sections, and the coupling strength among the

excited isotopes is governed by the gas pressure and concentrations

of the species. For a heterogeneous system, e.g., isotopic species

adsorbed on a solid surface, the energy transfer processes governing

the selectivity of the isotope separation are more complicated due

to the many-body effects of the adspecies and the surface/bulk atoms

of the solid. Instead of pressure-induced collisions among the iso-

topes as in a homogeneous system, different interaction mechanisms

are responsible for the energy transfer among the adspecies in a

heterogeneous system. They include dipole-dipole interactions among

the isotopes adsorbed at different lattice sites, migration-induced

* nonradiative interactions/collisions and other direct and indirect

(surface-mediated) couplings.

For a system consisting of a group of identical adspecies and

* subjected to a laser radiation, the selective excitation of the

1 active modes and/or the active species without significantly heating

up the solid (phonon modes) has been recently studied by Lin et al.2

In the present paper, we make the extension to a mixture of isotopes.

* The selectivity of the isotope separation is governed by the para-

meters involved in energy transfer processes such as the energy (Ti)

and phase (T2) relaxation rates, the coupling between the active



°4

-3-

modes of the isotopes, the intra- and intermolecular couplings of

the adspecies, the multiphonon relaxation rates of the active modes

and their frequency difference resulting in different absorption

cross sections.

The present paper is organized as follows. In Section II, a

model system consisting of a group of mixed isotopes and subjected

to laser radiation is described by a total vibrational Hamiltonian

including the direct and indirect interactions among the active

modes, which interact with each other and are coupled to a common

bath comprised of the surface and bulk phonons (and

also the inactive modes of the adspecies). The equations of motion

of the average excitations (number of photons absorbed) are set up

in the Heisenberg-Markoffian picture, and an excitation-dependent

complex frequency resulting from the nonlinearity property of the

excitation process is introduced in Section III. Two important

features are shown in Section IV: (A) the effects of phase (T2)

relaxation on the time evolution of the average excitation, and

(B) anharmonic effects on the steady-state excitation governed by

a cubic equation, where the "bistability" characterized by a criti-

cal laser intensity and an optimal detuning are calculated exactly.

The rise times of the steady-state excitation for laser frequencies

far from as well as near the optimal detuning are graphically shown

for the numerical solutions of the coupled equations. Anharmonic

effects on the steady-state excitation and the bistability feature

have been discussed in a previous paper, 3 but part of that discus-

sion is repeated here for the sake of completeness. Furthermore,

in the present paper we consider an alternative method, which includes
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the dephasing effects on the transient excitation which were not

calculated previously.
3

In Section V, the role of the isotopic coupling strength played

in the total excitation is analyzed, and expressions are derived for

the level broadening (narrowing) and frequency red (blue) shift.

The effects of the isotopic coupling strength, the frequency difference

and the anharmonicity on the selectivity of isotope separation are

investigated by means of numerical results of the time-integrated

excitations in Section VI. Finally, we summarize the main results

in Section VII.

II. Model Hamiltonian

We consider a model system consisting of an isotopic mixture

of species adsorbed on a solid surface and subjected to infrared

radiation with frequency near-resonant to those of the active modes

of the system. The vibrational spectrum of the adspecies/surface

system may be partitioned into a high-frequency region consisting

of the active modes and the inactive modes of the adspecies and a

low-frequency region comprised of the surface and bulk phonon modes.

The latter are not optically active and can only be excited via

multiphonon relaxation of the active modes. In addition to the

irreversible energy transfer between the adspecies and the phonon

modes, which presumably form a quasicontinuum, the reversible energy

transfer among the intra- and interspecies bound states also plays

a prime role in laser-stimulated surface processes. For a system

consisting of a single polyatomic (n-atom) adspecies, the intra-

species energy transfer is governed by the anharmonic coupling among



the 3n "frustrated" normal modes, and therefore the detailed energy

populations in each individual mode involve solving a set of 3n

coupled equations. For a system consisting of two n-atom isotopic

adspecies, one must begin with a set of 6n equations which include

the interactions between the active modes of different isotopes.

The isotopic coupling strength is usually very strong because of the

small frequency difference between the isotopes of interest.

By the concept of the "energy-gap law," 4 we realize that the

interaction strength for a multi-quanta process is relatively weak

compared with that of a single-quantum process. Therefore we shall

factor out the single-quantum coupling, i.e., the interaction between

the active modes of the isotopes, and regard the other all inactive

modes of the adspecies and the phonon modes as a heat bath. By

this factorization procedure, we have ignored the interactions among

the bath modes, although we shall not ignore the bath-mediated coupl-

ing between the active modes. Furthermore, the interspecies coupling

will be effectively accounted for by an ensemble-averaging procedure.

We first consider the simple system depicted by Fig. 1(A),

which consists of only two interacting isotopic adspecies A and B with

active mode frequencies wA and wB' respectively, and both coupled

to a common bath C with frequencies wj. The total vibrational Hamil-

tonian of the system may be written as

H0 is the separable portion, HAB and HACB are the direct and indirect

(bath-mediated) couplings of the active modes, respectively, H AC and

HBC represent the irreversible relaxation of the active modes A and B
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to the bath modes, respectively, and HAF and HBF are the laser inter-

actions with isotopes A and B, respectively.

The direct excitation of the bath modes, HCF, is not included

in the above Hamiltonian, since the far off-resonant excitation is

significantly weak compared with that of near-resonant excitation,

i.e., we shall be interested in a laser radiation with frequency

W W A' wB and w>> j. Furthermore, electronic excitations of the

substrate leading to direct bulk heating are neglected, such as infrared

excitation of adspecies on a semiconductor surface which has very small

absorption coefficient for w=1000-3000 cm-  We note that the

bath-mediated interaction Hamiltonian, HACB, is primarily governed

by the intraspecies inactive modes, since the intramolecular anhar-

monic relaxation (IAR) is usually much faster than that of the phonon

relaxation. [Note that the bath (C) modes consist of the inactive

modes of the adspecies as well as the phonon modes.] Based on the

relative strengths of the pumping rates (V A,B), the direct active-

mode coupling (DAB), the bath-mediated coupling (DACB ) and the multi-

phonon relaxation (Dc), which are governed respectively by the
ABC

Hamiltonians HA,BF H H AC and HA,BC' we may distinguish several

types of excitations: (i) single-mode (A) selective, for VA >VB,
DAB, DA , DA,BC; (ii) active-mode (A and B) selective, for

VA B >>D DACB DA,BC or V DAB> >VB, DACB , DA,BC; (iii) functional-

group selective (or adspecies selective), for VA = VB DAB DACB>>DA,BC ,

i.e., selective bond breaking is still possible, even when IAR is

very fast, if the multiphonon relaxation is considerably weak; and

,z 5- (iv) nonselective thermal heating, for DABC VAB, DACB , DAB.
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We now extend the above model to a system consisting

of a group of isotopic mixtures, which is represented by Fig. 1(B).

Notice that the density of states peaked at wA and w B are

further broadened compared to those in Fig. 1(A) due to the addi-

tional interspecies interactions. The total Hamiltonian for this

more general system may be written as

R H + "4A + H _ + R + HA + H + H."2
2 f 6 A SA V' (2)

where H1 is given by Eq. (1), and we have now included the active

mode couplings within the same isotope, HAA and HBB, as well as the

indirect couplings, H (i,j,k=A,B,C). A more explicit description

of the above model system is provided by the second quantization

representation of the total Hamiltonian. The unperturbed Hamiltonian

for anharmonic isotopes is

0 (3)

where each sum runs over all the individual species for a given

isotope (A or B with anharmonicity c or e*, respectively). The

direct interaction Hamiltonians are given by

q AS 
(4.a)

-- = F"C bft + le., (4.o,
* *

Hod ltv II (4 .e)
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where D and F are the appropriate interaction constants among dif-

ferent modes, Cp = I c is a multiphonon operator for a p-phonon
p 2

process and h.c. stands for the Hermitian conjugate. The indirect

interaction Hamiltonians can be represented as

4c, J, A a , AO A(5.a)'4

AcA (5.b)

fL AA bfb aia (5.c)

with similar expressions for HBCB and H BAB . We note that the appro-

priate indirect coupling constants G and K are constructed by energy

conservation such that no energy is transferred from the A mode to

the bath (C) modes and the B mode, respectively. Finally, the laser

field interaction Hamiltonians are given by

.H AV 'c " ..)
HA,: A (6. .a)

HBF A ~ (6.b)

' ~V ;1 [a,8 do (,'_n 6. c)
'A848' A,8

whe , P' (0) is the derivative of the dipole moment of the pumped-

mode evaluated at the equilibrium point, and E is the electric field

of the radiation, assumed to be time-independent, with circular

frequency w and linearly polarized at an angle 6 with respect to

*' (0).

" l1
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III. Equations of Motion in the Heisenberg-Markoffian Pictur..

To investigate the energy transfer dynamics, i.e., the time

evolution of the number of photons absorbed by the isotopes accom-

panied by bath-induced damping, we shall first set up the equations

of motion which involve the many-body effects resulting from both

the active modes and the bath modes. For a group of isotopic ad-

species subjected to laser radiation, a physical measurement would

deal with an ensemble-averaged quantity over both the active and

the bath modes coordinates, e.g., the average excitations of the

isotopes (photon absorbed per adspecies). Assuming there are nA

and nB adspecies for isotopes A and B, respectively, then we shall

be interested in the average excitations defined by

<NA> E <<Zaa.>>/nA and <NB> z <<bb >>/n where the double bracket

<<--.>> denotes the ensemble average (or trace) over both the active

and bath modes. The many-body effects due to the coupling between

the active and bath modes may be reduced to damping factors either

by the Wigner-Weisskopff approximation (WWA) or by the Markoffian

approximation.6 To utilize WWA, one would first take the Laplace

transform of the equations of motion and use the so-called "single-

pole" approximation to reduce the many-body effects governed by a

summation over the bath modes. Here, we shall use the latter approach

and set up the equations of motion in the Heisenberg-Markoffian

picture (HMP). In HMP no memory effects are retained, which assumes that

the correlation time of the bath modes is much shorter than the

energy damping time of the active modes such that energy going into

the bath will not return to the active modes. The significance of the

energy feedback effectson excitations of the active modes will be

discussed in Section VII.
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Picturing the system in HMP, the equations of motion for

the ensemble-averaged excitations of isotopes A and B, denoted

by <NA> and <NB>, respectively, can be represented as the following

set of coupled nonlinear equations derived with the help of Kubo's
2,6,7

cumulant expansion:

A -

A8 F (7.a)

B- + V etCt F4, , 0

-I (7.b)

1< 5A 4gt 4 ) rA.<N _3ji Iz) (7.c)

-A8 B > (7.d)

Here we have used the ensemble-averaged quantities <7a.i> /nAA,
< (a.V> /n < Daib> / AB

1 A A , (.A e

We note that the ensemble -averaged operators of different active modes

are assumed to be uncorrelated, i.e., <a b>=<a ><b>, since the average

quantity <...> over the bath-mode coordinates remains an operator in

the active-mode coordinates, and their correlation via the surface-induced

random force, which is assumed to be a "white" noise, is negligible. We

also assume the bath modes to be in thermal equilibrium, and hence the

mean occupation number of the bath mode, n , is constant. [The transient

behavior with a time-dependent -c caused by substrate heating will be

discussed in Section VII.] Moreover, we have used the ansatz <aaa>=,a> etc

The important

A features of the above equations of motion are: (i) The active modes

of the mixed isotopes, with average excitations <NA,B
> , are pumped

by laser radiation via VA,B and relax to a common bath via the multi-

A,B
phonon (TI ) energy damping factor A, where the energy fluctuation

m~~ " -' . .. _II
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of the bath modes is given by the Bose-Einstein distribution I with

a mean frequency ;c and evaluated at the surface temperature T;

(ii) The reversible energy transfer between the active modes A and

B is governed by the mean isotope coupling strength DAB (note that

the second terms in Eq.(7.c) and in Eq.(7.d) have opposite signs];

(iii) The coupled equations for the excitations <N A> and <N B> are

highly nonlinear due to the excitation-dependent effective frequency
A,B

Seff(t) which is complex and time-dependent. (The surface-induced

frequency shift of wA,B is ignored in Eq.(7.e).] The total width,

A,Bi.e., the imaginary part of weff is given by the superposition ofIA,Banthphs(T)raxtothe energy (TI) relaxation factor 1 and the phase (T) relaxation
2z

A,B A,Bfactor y . While y 1Barises mainly from the direct interaction part of the
Hamiltonian, HAC and H, the dephasing factor yAB is mainly due

to the indirect interactions such as HAA, HBBI HACA, etc. [For an

explicit expression of rA,B , we refer the reader to Ref. 2.)

(iv) In the absence of interisotopic coupling, DAB= 0, active modes

A and B are noninteracting and the difference of the excitations

<NA>- <NB> will be characterized only by the frequency difference
A eff' if VA = VB (v) in the absence of laser radiation, VA.= 0

the steady-state total excitation <NA>+ <NB> c'oes to the thermal

equilibrium value 71c as expected from the sum of Eqs.(7.c) and (7.d).

The above coupled equations can also be set up by a phenomen-

ological approach, where active-mode operator 0 a, a or a a obeys

the equation

KI VA2

A1)i - • (8)

a i at
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This dephasing term is mathematically constructed such that for

a and a a,

dA At
T A (9.a)

it =0 (9.b)

that is, - -,, ao a, ,j& a[40
>> (10)
'j

This assures that the dephasing (T2) process changes only the

phase of the pumped-mode (see Eqs.(7a) and (7.b)] without changing

its excitations. We note that, in Eqs. (7.d) and (7.e), the exci-

tations are damped by AB only, with no contribution from AB

Because of the rapidly oscillating optical frequency,

w 101 3Hz, the size of the time step necessary to follow the evolu-

tion of the excitations will be as small as 10- 14 sec, which implies

l05 steps to generate the time-dependent excitation profile up to

the range of a nanosecond. A way to overcome this difficulty is

that, instead of following the optical frequency, one may use the

rotating-wave approximation (RWA) which discards the highly oscil-

latory terms [exp(±2it)]. In this way one works on the time-scale

given by the inverse of the detuning, which is in the range of several

nanoseconds for a detuning of several cm - . For this purpose, we

introduce the transforms

A A et) 4V (-- O&)
(ll.a)
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and employing RWA, we simplify Eq.(7) to

iA =(o -c) + / (12.a)

(12.b)

,--- .A -. A ,, ) --,< A>, (12.c)

< >- .8+ 2 I,,vn (As -T,' ,. (12.d)

Im. denotes the imaginary part, and we have ignored the bath-mode

occupation number Ifc by assuming an initially cold surface and that

coherent laser excitation dominates over incoherent thermal effects.

IV. Average Excitation

The equations of motion in Eq.(12), which are nonlinear due
A,B

to the excitation-dependent effective frequency weff(t), are in

general not analytically solvable, particularly for the case of

high excitation and strong isotopic coupling in which perturbation

*theory breaks down. Exact numerical solutions for the excitation

will be presented in the next section, but before that we shall

investigate some simpler limiting cases below.

(A) Time-Dependent Excitation - Dephasing Effects

For c* DM = 0, Eq.(12) can be solved exactly to give theA,B

time-dependent average excitation of the active mode A (and a simi-

lar expression for the active mode B since A and B are noninteracting):

2 2

( ' X| (1-1.4 ) + (IlF/Tr)(".+ ), (13.a)

, , ,,, EMO
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Xa2)'r +1 N'/ e~i)4~(~12. (13.b)

,(13.cd)

Setting the dephasing factor y2 equal to zero, we can further reduce

the solution to the simple form

f I ' _jt Tt

We note that X1 and X2 are the steady-state solutions (t-) for

yA # 0 and y A = 0, respectively. This expression can also be

obtained by solving Eq. (12.a) with e* = D = 0 to get
A A

Att= L(AA)/(- +i0/ ) ]-[%p a t -r /2) 1], (5

and the average excitation is then <NA(t)> = IA(t) 2 provided yA
A 2

equals zero.
A A

To demonstrate the effects of yA, y and A on the excitation,
1 ~2 anA

in Fig. 2 we plot the three-dimensional excitation profiles in the

A(yl,t,<NA>) space. Part (A) slows the excitation profile according

to Eq. (14), in which the simple exponential decay in time is governed

Aby the damping factor yA and the oscillatory behavior results from

the detuning 8A 0. [The excitation profile for = 0 was shown
3

previously, but for comparison purposes we show it again here,
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except that now the plot is a function of (VA/2)2 instead of the
dofteret

laser intensity.] Parts (B) - (D), which are significantly~from

Part (A), show the excitation profiles including the dephasing

A Aeffects, i.e., y2 # 0. It is seen that y not only affects the

steady-state excitation solution X1 ( :X 2 YI/rA, for A <<Yj) but

also changes the transient excitation profiles [see Parts (E) and

(F)]. For an alternative picture of the dephasing effects on the

average excitation, we plot th time evolution of <NA(t)> alone in

Fig. 3 for various values of and YA, such that yA + yA is con-
2 an 1i suc

stant. It is seen that the average excitation oscillates between

the envelopes of El+ exp(-Yit)] and (1-exp(-y~t)] for the case ofA A

y2 = 0 [Part (A)], while it exponentially increases by [1- exp(-y t)]A

for the case of large y2 [Part (C)].

(B) Steady-State Excitation - Anharmonic Effects

We now consider anharmonic effects by removing the assumption

that * is zero (but still setting D-A,B equal to zero). For the
A,B

limiting case of steady-state excitation, Eq.(12) results in a cubic

equation for <N A> (and similarly for <NB>):

X. C* (16)

where X z <NA> and the subscript A has been dropped, i.e., AA = 6,

C = C*, etc. The behavior of X is nonlinear with respect to V2
A

and exhibits a "bistability" with respect to A. Moreover, the

optimal detuning A* is red-shifted with respect to that of the

harmonic case (A*= 0), which may be seen be rewriting the cubic

equation as



-16-

which upon differentiation and substitution for V from Eq.(16)

yields

dX - (18)

The optimal detuning then occurs at the maximum (dX/dA = 0) and

is given by A* = 2e*X* (note - the single asterisk which was

already attached to e does not signify an optional condition as

it does for A and X). At the other extreme where dX/dA -- , we

obtain a quadratic equation for the detuning, whose two roots

correspond to a "bistability" in X as a function of A. By equating

the two roots, we obtain the critical pumping rate IV12 = IV*12

2
- y1r /(2c*), implying that the existence of the bistability is

a consequence of the condition V >V*. For a fixed laser intensity,

which is proportional to V2 (or the pumping rate), the bistability

criterion may also be stated in terms of the anharmonicity as

£* >C** = (Y1/2)(r/;V). This "bistability" feature of the steady-

state excitation is shown in Fig. 4. It is seen that when the

anharmonicity c* is larger than the critical value, s**, the exci-

tation profile shows the bistable transition from P to Q

as the detuning increases, and from R to S as the

detuning decreases. We note that the maximum excitation is red-

shifted to A*> 0, which is a general property of any nonlinear

oscillator with e*> 0. A classical analogy of this nonlinear

quantum oscillator has been known for some time.
8

We now investigate another interesting feature of the nonlinear

excitation, namely, the rise time of the steady-state excitation
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which, to the best of our knowledge, has not been reported in

*the literature. For this purpose, the time-dependent excitation

with DAB = 0 and ez = 0 has been numerically solved. Various

rise times of the steady-state excitation are shown in Fig. 5,

corresponding to different points along the excitation profile

(A) in Fig. 4. In Part (A), the time-dependent

excitations with short rise times (- 0.2 /yl) are shown for the

portion of the profile far from the optimal detuning A*. The

excitations with long rise times (5 to 40 (1/y)] for the portion

near the optimal value A*= 8.0 are shown in Part(B). The important

feature of the nonlinear excitation, as revealed in curves 3 to

19 of Part(B), is that the rise time dramatically increases as we

near the "top" of the profile (A) in Fig. 4, i.e., when A-A*,

* and when we reach the critical point, i.e., A= A*= 8.0, the rise

time virtually goes to infinity. This is to say that it will take

a considerably long time for one to excite the active mode to the

maximum steady-state value X*, even when optimal detuning is met

(A= A*). In Fig. 6, we display the excitation profiles for the

*case of low damping in which transient excitations go well beyond

their steady-state values, resulting from oscillations due to

the detuning. Again, these curves show an increase in the rise

time as we approach the bistability transition point [see Part (C)].

-"V. Total Excitation - Role of the Isotopic Coupling Strength

A system of interacting isotopes, DAB 0, is governed by

a set of coupled cubic equations which are not analytically solvable.

For tractable results, we shall investigate the low excitation

case, i.e., where anharmonicity is negligible, 2,B <A,B> <<

,A , A, ... , /2.I
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We shall further simplify the situation by assuming each active

mode A and B to be a two-level system with vibration-vibration

transfer strength D, where both upper levels are coupled to a

common bath with damping factors yA and yB* The dephasing factors

will be ignored. The total vibrational Hamiltonian of the coupled

two-level systems is

H, 1= . + R(19)

where H0 is the field-free Hamiltonian including the coupling of

the active modes, and H are the laser interaction Hamiltonians.A,BF

The bath-induced damping factors havc been absorbed in H0 , whose

matrix representation has the form

0-.(20)

Diagonalization of M0 gives the eigenenergies

E1  a (21.a)

I (21 .b)

AJ2. (21 .c)

corresponding to the eigenvectors 1+> and I->. These eigenvectors

are related to the basis set for the matrix of Eq.(20), with eigen-

energies E1 ,2, by

(ZD -5% 1
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where 8 is given as

OE-E (22.b)

We can separate the real and imaginary parts of E1 by writing

(23.a)

f (23.b)

where the coupling-induced energy shift 6E and level broadening 6y
are given by

(24.b)

oC = br ( _ 'C R.2 ),
(24.c)

g~g2  (24.d)

&= *(,- , )(E-L). .

As shown schematically in Fig. 7, E+ and E_ are blue- and red-

shifted, respectively, with respect to the old state energies E2

and E1 . Furthermore, the lower and upper levels are narrowed and

broadened, respectively, by 6y. It is interesting to note that

this broadening (narrowing) effect is found only when the initial

level widths are unequal, i.e., yA # Y

A B
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We now expand the wavefunction of the total Hamiltonian H3

in the complete set {10>, 1+>, 1->},

1 m>= C (25)

where the coefficient amplitudes Cn(t), n=-0,+,-, are time dependent

due to the time-dependent laser interaction Hamiltonians HAF(t)

and H BF(t). Substituting the above expansion into the time-

dependent Schr8dinger equation and employing the rotating-wave

approximation, we obtain the coupled equations of motion

+ c-0(-' 4 ) (26.a)

c_ =(v26.c)4) (26,.c)

where the new detunings and damping factors are given by

A+ = (E+_-1B,A)/i and y+= y ±B,A6y, respectively. Here we have

ignored dephasing effects and assumed V+= V = V. Using time-

dependent perturbation theory with the initial conditions

C0 (t)z C0 (0) = 1, C+(0) = 0, we obtain the transition probabilities

or population functions

Although these correspond to the average excitations described in

the previous section, P +(t)# <NA(t)> and P_(t) # <N B(t)> since the

states 1±> are mixtures of 11> and 12>. However, the total exci-

tation <NA> + <N B> is identical to the total population P +(t)+ P (t)

by energy conservation.

= |. ... . ,.__- , ,I.. .



To demonstrate the effects of the isotopic coupling strength,

D, on the total excitation, we consider the steady-state case

N+M X + Y= (P++P_)t ,, which is found to be

+ t2 (28)

The above expression is simply a superposition of two Lorentzians

which are now decoupled in the new basis. The effects of D on the

total excitation are embedded in the new detunings 4± and the new

level broadenings (or damping factors) y4 . We note that the above

total excitation, proportional to the absorption intensity of the

adspecies, may be used in aline-shapefitting procedure. However, an

actual adspecies spectrum may be further broadened by, e.g., collisional

dephasing which is coverage-dependent and/or shifted compared to that of

Eq.(28), where only the T1 (energy) broadening and the isotope coupling

induced line-shift are included. We suggest that a coverage- or pressure-

dependent measurement of the low intensity absorption spectrum would be

a good test of the above diagonalization procedure of a two-level physical

system.

The effects of the coupling strength and the frequency dif-

ference of the isotopes on the steady-state excitation are shown

in Fig. 8. It is seen that the peaks of the profiles, located

at the uncoupled active-mode frequencies wA and wB, are shifted

apart for D# 0 [see Part (A)]. Moreover, the total excitation

profiles are governed by the frequency difference, wA- WB and

the damping factors yA,B. For a small damping factor we expect

a high excitation [compare Parts (B) and (C)], and for a small

frequency difference we expect a strong interference [compare

Parts (C) and (D)]. This red (blue) shift and narrowing (broaden-

ing) features can be more easily visualized by the expression of
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the total excitation [Eq.(28)1, defined in the new basis 1±> with

two decoupled Lorentzians, than in the old basis {Ii>,12>} where

N+ is given by a complicated expression in terms of D, yA,B and
3

AA,B"

VI. Isotopic Selectivity

In this section we shall investigate the effects of the iso-

topic coupling strength, the frequency difference and the anhar-

monicity on the selectivity of isotope separation. Some tractable

results for the harmonic case (E*= 0) will be analyzed, and then

numerical results for more general cases with E*,D ,0 will be

shown graphically. Isotopic selectivity may be visualized in a

simple way through the steady-state excitation difference N.E X- Y,

where X and Y are the steady-state excitations of the active mode

A and B, respectively, which are found from Eq.(12), for e* = 0,
A,B

v - = A B
VA=VB= Vy'l = Y2 Y I and r A= B= r, to be

2 '2x(-2 )~T(z 1 ~] (29 .a)

Zj D r/2(29 .b)

(29.c)

(29 .d)

where AA,B is the detuning and D D DAB is the mean isotopic coupling

strength.

The above formulas display some important features of laser-

stimulated isotope separation: (i) the isotopic selectivity, governed
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by the difference excitation N_, increases when the coupling

strength, D, decreases; (ii) for very strong coupling with D= D*

= Q /2,there is zero selectivity, i.e., N_ =0. These coupling-

induced interference effects that "smear out" the selectivity of

an isotope mixture, which is highly separable if it is weakly

coupled, may be visualized more easily by rewriting Eq.(12.a) as

* A

2A(~)A~ A/ (30)

where the effects of the coupling strength are absorbed in the

comle efeciv fequnc 0A WA + DB/A. This frequency

reflects the fact that the coupling term DB/A plays a "frequency-

resonance" role in the selective excitation processes, i.e., a

strong coupling strength between the isotopic species may reduce

the selectivity by "promoting" the isotopic species to a virtually

equal freguency level. Moreover, for D> Q+/2, N_ may even reverse

its sign so that X< Y. In the zeroth-order solutions of the equa-

tions of motion, i.e., with D= 0 in Eq.(12), the active modes of

the isotopes are isolated from each other and are independently

excited. In this situation, the isotopic selectivity is charac-

terized by their frequency difference, resulting in different

absorption cross sections given by

VA W (r I) (31)

To demonstrate the effects of the coupling strength on both

the dynamics and the steady-state excitations, we plot the numer-

ical solutions of Eq. (12) for the harmonic case = 0) inA ,B
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Fig. 9. It is seen that <NA> is higher than <NB> for A A< AB

with D= 0 [Part(A)]. As D increases, both excitations decrease

[Part(B)]. Increasing further the coupling strength to the transi-

tion value, i.e., D= D*, we see that the steady-state excitations

become identical, as expected from Eq.(29). However, the transient

excitations at this point are not identical [Part(C)I. For large

coupling strength, D >D*, both excitations are low and <NB> is

higher than <NA>, as expected from Eq.(29) where N_< 0 [Part(D)].

In Fig. 10, we include the anharmonicity (e* B 0) and plot

numerical solutions of Eq.(12). Here the increase of D does not

necessarily result in the decrease of <NA> due to the nonlinear

behavior of the excitation and the fact that the D induces a fre-

quency shift as seen in the previous section. There turns out to

be an optimal set of values (D,e*) which yield a maximum excita-

A A
tion. For the case shown in Fig. 10 with (eylY 2,VA,AAAB)

(1,2,2,10,8.3,5), Dz 2.9 is the optimal strength [compare Parts

(C) and (D)].

A more realistic investigation of the isotopic selectivity

should account for the laser pulse duration, tp, and for this

purpose we can define the isotopic selectivity S by

where WA,B t) is the instantaneous probability rate of transition

from <N A,B(t)> to the energy range from wnich dissociation (or

desorption) takes place,and mA,B is the initial concentration of

the isotopes. For low dissociation (or desorption) yields, mA,B(t)
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can be taken as constant. By further assuming mean transition

rates WAB independent of time, we can define a reduced selectivity

= IWBmA/(WAmB) S by

S =p J(N 10 t Jr 8~ t*(33)
S0 0

Solving Eq.(12) numerically, we plot the time evolution of the

reduced selectivity in Fig. 11 for some cases of D= 0 and Fig. 12

for Dy 0. From Fig. 11 , we see the following features: (i) for

the harmonic case, with e *= 0, S= 1 for AA = IABI, since the exci-A,BA

tations are symmetric with respect to the A 0 axis [Part(E)];A,.B
(ii) for e* 0, a higher selectivity is shown in Part(B) compared

to that of Part(E), due to the nonlinear feature of the excitation

[see the profile (A) in Fig. 4] (iii) the nonlinear anharmonic effects

on the selectivity are further shown in Part(A),(C) and (D).

Depending on the on the portion of the profile (A) in Fig. 4,

the effects of the frequency difference, AB - AA' on the isotope

selectivity could be significantly enhanced [compare Part(A) and

(D), where in both cases JAB_AAI = 5].

Fig. 12 reveals the following features: (i) Part(E) shows

the effects of D on the selectivity for the case of * = 0 at
A,B

D= D* = (AA+AB)/2 , where 9= 1 at steady-state as expected from Eq. (29);

(ii) for e* 340, D* is "blue-shifted" toward S= 1 {Part(F)];
A,B

(iii) an increase in D shows a decrease in S [Parts(A) to (G)],

and S <1 when D >D*, corresponding to the situation of <NA>< <NB>

[see Part(D) of Fig.9].

Based on the results displayed in Figs.(1i) and (12), we con-

clude that: (i) for low excitation (E* z 0) and weak isotopic
A,B

, .
l
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coupling (D: 0), the optimal condition for high selectivity is

that the laser frequency should be tuned such that A z 0 and

AB > 0 in order to separate say, A, from B; (ii) for high excita-

tions, anharmonic effects play an important role, with an optimal

detuning A = A*- 2e*X which may be further"red-shifted" due to

the effects of the isotopic coupling strength D. We finally note

that the parameters - detunings(AA,B), frequency difference (wB-wA),

coupling strength (D) and the laser pumping constant (VA,B ) ranging

from 1 to 10 - were chosen to explore the role of anharmonicity

and isotopic coupling strength for an unspecified system. However,

one should be able to treat a specific system by identifying these

parameters with actual physical quantities.
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VII. Effects of Energy Feedback from the Heated Substrate

As mentioned in Section II, for infrared excitation, direct

vibrational excitations of low-frequency substrate phonon modes

are negligible due to large detunings. Direct electronic excita-

tions of the substrate are also negligible in the present model.

For example, for a semiconductor with a band gap energy of -10,000
-l

cm , which is much larger than the Cinfrared frequency of
-i

-2,000 cm , the absorption coefficient is very small. However,

indirect heating of the substrate via multiphonon coupling may pro-

vide a source of energy feedback which causes thermal-phonon-

activated excitation of the active mode.

In this Section, we shall investigate the energy feedback

effects on the excitation of the active mode by combining the

quantum excitation equation, Eq.(7), and a classical heat diffu-

sion equation to account for the rise of the substrate temperature.

To describe the energy transfer between the laser radiation and

the system with the subsequence of substrate heating, we shall use

the following coupled equations for the average excitation of the

active mode () and of the effective bath mode (N2):

dNl
~ - - y(N-N 2) (34)

dN22  V"(DVN] + y(NI-N 2 ). (35)

In Eq.(34), the first term is the total pumping rate with absorption

cross section a, laser intensity I and frequency w. The second term

describes the energy relaxation of the active mode with a multiphonon

.... -I
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relaxation rate y; the energy feedback effect is governed by the

difference of the active-mode and bath-mode excitations N1-N2.

The time-dependent excitation of the bath mode N )provides the
2

phonon-activated excitation of the active mode. Eq.(35) is simply

an energy diffusion equation for the substrate with diffusivity D,

with the gradient operator V defined in the direction of the energy

flow of the bath mode.

We note that, without the diffusion term, Eq.(34) may be

readily derived from Eq.(7) with N1 = NA + N B and replacing the

steady-state excitation n by a time-dependent bath-mode excita-c

tion N2 (t). As we shall see, Eq.(7) represents the diffusion

limit of Eqs.(34) and (35).

In general, the above coupled equations can only be solved

numerically since a is excitation dependent [see Eq.(31)], D is

temperature dependent and I is time dependent, e.g., a gaussian

pulse I(t) = I0 exp [-(t/tp ) 2] . For simplicity, however, we con-

sider a square pulse excitation 'ir the adiabatic limit with a

small diffusion length, /D, and also in the diffusion limit with

a large diffusion length of the heated substrate. Moreover, we

shall consider the optimal excitation, i.e., the absorption cross

section, a, to be independent of the excitation in order to elimi-

nate the nonlinear coupling in Eq.(34).

In the adiabatic limit, which is a situation of a local heat-

ing (via multiphonon coupling) of the substrate surface with a

small diffusion length, we may neglect the diffusion term in

Eq.(35). The coupled equations can then be solved analytically
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to give the reduced excitations (in units of the total excitation,

I 0 t p/hw) for the active mode (NI*) and the bath mode (N2

N1 *(t) = [t+f(t)]/2tp (36.a)

N2*(%)= [t-f (t) ]/2tp (36.b)

for 0<t<tp, and

Nl*(t) = [t p+f(t p)exp(-2yt)]/2tp (36.c)

N2 *(t) = [t P-f(t p)exp(-2yt)]/2t (36.d)

for t>tp, where f(t) = [1-exp(-2Vt)]/(2y), and tp is the duration

of a square pulse laser with intensity I0*

On the other hand, in the diffusion limit, the bath-mode

energy rapidly diffuses into the bulk of the substrate which be-

haves like an infinite heat sink. In this case the rise of the

substrate surface temperature is not significant, and no energy

feedback will be found. The reduced excitations of the active

mode may then be well-approximated by

N1*(t) = (1+No*)[l-exp(-yt)] (37.a)

for 0< t < tp, and

ppNl*(t) = N 0*[l-exp(-yt)] + [exp(yt p)-llexp(-yt) (37.b)

for t > t p, where N0* is the steady-state value.

The time evolution of the reduced excitations is shown in

Fig. 13 for the adiabatic and diffusion limit. It is seen that
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in the adiabatic limit the active mode has a higher excitation

than in the diffusion limit, and both NI* and N2* reach a "quasi"

steady-state value of 0.5, for t f 5 t . We note that long time

behavior of both NI* and N2* is characterized by the diffusion

processes even for the small diffusion length case, and in the

region of t>> tp the excitationiwill exponentially decay to the

steady-state value N0*. We also see from Fig. 13 that the active-

mode excitation N1 *(t) for the diffusion limit is upshifted to

that of the adiabatic limit via the energy feedback provided by

the bath-mode excitation, N2*(t), which characterizes the local

heating of the substrate surface.

The nonequilibrium transient excitations may be viewed in

terms of the effective vibrational temperatures which are related

to the excitation energy by
5 '9

n1Tl = N1 fw, (38.a)

n 11w = N Mw. (38.b)2 2 2

n and n2 are the average occupation numbers for the active mode

and bath mode, respectively, given by the Bose-Einstein distribution

eff -
n n1,2 (t) = [exp(S'w 1 2/kT 1,2) - 11l (39)

where w and w are the mean frequency of the active and bath mode,

respectively, and the transient effective temperatures T1 ff andi eff

T2 e are for the active and bath mode, respectively. By this

..2
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concept of transient temperatures, which are governed by the

transient excitations, one may selectively excite the active mode

in terms of a high pumping rate for a system with a slow relaxa-

tion rate and a small diffusion length. In the transient region,

as shown in Fig. 13, the excitations Nl*(t) > N2*(t) give us a

higher transient effective temperature of the active mode com-

eff effpared to that of the bath mode, i.e., T1  > T 2

As discussed in the previous Section, the isotope selectivity

characterized mainly by the absorption cross sections of the

isotope (Eq.(31)] is strongly frequency dependent due to coherent

laser excitation. The incoherent thermal excitations of the active

modes due to the energy feedback of the heated substrate, which is

frequency independent, would smear out part of the isotope selec-

tivity, which is governed by the ratio NA/NB, although the energy

feedback causes a higher total excitation N1  NA + NB. We finally

propose that for the improvement of the laser-stimulated isotopic

separation, one may minimize the energy feedback effects by using

an initially cold substrate or using high diffisivity materials

to reduce the local surface heating.

VMM. Conclusion

In the present paper, the nonlinear effects of laser-excited

anharmonic interacting isotopes and the effects of the isotopic

coupling strength, the energy (T1) and phase (T2 ) relaxation rates

and the frequency difference on the average excitations are theo-

retically investigated. The important features are summarized as

follows:

(i) The average excitations of interacting isotopes are

governed by a set of coupled equations (Eq.(7)], where the anhar-

monic quantum oscillators coupled to the bath modes are described

by the effective frequency w A,B which is complex and time dependent
ieff
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due to the anharmonic correction 2* <N (t)> and the overallA,B A,B
level width B = AB + AB.

(ii) The time-dependent average excitation is given by a

complicated expression [Eq.(13)] which reduces to a simple Lorentzian

for the case of y2 = D= 0.

(iii) For high excitation, the anharmonic correction is sig-

nificant, and the steady-state excitation is governed by a cubic

equation with a "bistability" and a red-shifted optimal detuning

[Eq.(16)]. The rise time of the nonlinear excitation dramatically

increases as the "trajectory" approaches the optimal value A*

[Figs. 5 and 6].

(iv) The adspecies spectrum associated with the total steady-

state excitation and characterized by the coupling strength,

the frequency difference and the level widths of the isotopes

is found to be a superposition of two Lorentzians which are com-

pletely decoupled by a diagonalization procedure [Eq.(28)].

(v) The steady-state excitation difference N_, for a low

excitation with eB = 0, is characterized by a critical coupling

strength D*= Q+/2 [Eq.(29)]. For a high excitation but with weak

coupling, £e* 0, Dz 0, the isotopic selectivity depends on theA,B

absorption cross sections of the isotopes in which the frequency
AB
W eff plays the essential role [Eq.(31)]. For a strong coupling

case, D> 0, the reduced selectivity is found numerically (Eq.(33)3.

The results shown in Figs. 11 and 12 suggest that high isotopic

selectivity may be achieved by tuning the laser frequency to an

optimal value which is red-shifted with respect to that of the

noninteracting case, i.e., D= 0, given by A*= 2 *X.
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Figure Captions

Figure 1. Schematic diagrams of the density of states and the

interactions among the A, B and C modes described by

the Hamiltonians H1 (A) and H2 (B).

Figure 2. Excitation profiles in (yAt,<N >) space
A spacefor

1 A

(AA,VA) = (5,5) and the ratio yA/71 = (A)0, (B)l,

(C)3, and (D)10. Parts(E) and (F) represent

different viewing angles of Parts(A) and (D), respec-

tively, and show the effects of the dephasing factor
AA on the transient excitations. The values of the

points P and I are (0.05,0,0) and (4.25,6,XI, respec-

tively, where X1 is the steady-state excitation.

Figure 3. Time evolution of the average excitation for

(E*,V , A )=(0, 10, 5) a A =Y (A) (2,0), (B) (1,1)
A'A A

and (C) (0.2,1.8). Note that y + "'2 remains constant.

Figure 4. Anharmonic steady-state excitations showing the

bistability feature for (y1 , 2 ,V) = (4,4,10) and

(A) at the critical value of * =c** = 1.28 and

(B) above the critical value, * = 2.56 >F_**. The

bistable points are shown by P,Q,R and S. The harmonic

steady-state excitation (dotted curve) is a Lorentzian.
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Figure 5. Time evolution of the average excitation for high

damping cases, Y1 = Y2 = 4 and V = 10. In Part(A),

(E*,A) = (0,0), (E**,7.9), (£**,A*), (€**,8.1),

(e**,-5) and (0,7.9) for curves 1,2,3,4,5 and 6,

respectively. In Part(B), E* = e**, A = 7.8 (curve 1),

7.9 (curve 2) and A = 7.968 + 0.002n, n = 1,15 for

curves 3 to 17, respectively, A = 7.999 (curve 18),

A = 7.9995 (curve 19), A = A* (curve 20), A = 10

(curve 21) and A = 12 (curve 22). Note that (e**,A*)

= (1.28,8.0) are the optimal values which give a

maximal steady-state excitation X*= 3.125.

Figure 6. Time evolution of the average excitation for a case

of low damping with Y1 = 2= 2, V = 10 and e* = 1.

In Part(A), the detuning A = -5,0,5,8.3,8.4 and 10

for curves 1 to 6, respectively. In Part(B), A = 8.7

(curve 1), 8.72 (curve 2), A = 8.738 + 0.02n, n = 1,4

for curves 3 to 7, respectively, and A = 8.749 (curve 8).

Figure 7. Schematic energy diagram for the interacting active

modes with energies E1 and E2, respectively, coupled to

each other by D and excited by the pumping rate V.

The coupled basis {11>,12>} is transformed to a new

basis {I+>,I->} where the energy is red(blue) shifted

by 6E and broadened(narrowed) by 6y.
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Figure 8. Total excitation profiles in (N+,wA,BD) space for

=0, A,B = 0, V = 10 and (w AY) = (A) (15,5,5),E*= , 2 5m- A Y'S

(B) (15,7,3) , (C) (15,3,7) and (D) (5,3,7).

Figure 9. Time-dependent excitations, <NA,B(t)>, of the active

modes for the harmonic case, i.e., c* = 0 with

(V,y,AA,AB) = (10,1,4,8) and D = (A)0, (B)2, (C)D*

and (D)10. D* = (A +AB)/2 = 6 is the transition value

where N = 0.

Figure 10. Time evolution of <N A> for the anharmonic case with E* = 1,

(V,y,AA,AB) = (10,2,8.3,5) and D = (A)0, (B)l, (C)2.9

and (D)2.95.

Figure 11. Time evolution of the reduced selectivity [Eq.(33)]

for some cases of D = 0: (y 1BA2B ,V) = (4,4,10) and

(:*,AAA B ) = (A) (1.28,5,10), (B) (1.28,5,-5), (C) (0,5,10),

(D) (1.28,5,0) and (E) (0,5,-5).

Figure 12. Same as Fig. 11 but for the cases of D = 0 and D00
AB AB

with (,y ' 'AB2 'AA'AB'V) = (1.,8,4,4,5,10,10) and

D = (A)0, (B)2, (C)4, (D)6, (F)D* and (G)10. Part(E)

shows the harmonic case (*,D) = (0,D*), where

D* = (AA+A)/2 is the transition value.
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Figure 13. Time evolution of the reduced excitations (in units

of 1I0 t Pc/hw) generated by a square pulse of intensity

1and width t p, for the active mode, N1*(solid curve),

and the bath-mode, N*(dashed curve) in the adiabatic

limit and for the active mode in the diffusion limit

(do~tted curve). The total reduced excitation is shown

by the dashed-dotted line. Here a relaxation rate

X 0 .5/t pis used.
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